skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buchholz, Angela"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a “diagonal” Volatility Basis Set (dVBS) comparing gas-phase concentrations of oxygenated organic molecules (OOM) to their condensed-phase mass fractions. 
    more » « less
    Free, publicly-accessible full text available September 11, 2026
  2. Abstract. Currently, the complete chemical characterization of nanoparticles(< 100 nm) represents an analytical challenge, since these particlesare abundant in number but have negligible mass. Several methods forparticle-phase characterization have been recently developed to betterdetect and infer more accurately the sources and fates of sub-100 nmparticles, but a detailed comparison of different approaches is missing.Here we report on the chemical composition of secondary organic aerosol(SOA) nanoparticles from experimental studies of α-pinene ozonolysisat −50, −30, and −10 ∘C and intercompare the results measured by differenttechniques. The experiments were performed at the Cosmics Leaving OUtdoorDroplets (CLOUD) chamber at the European Organization for Nuclear Research(CERN). The chemical composition was measured simultaneously by fourdifferent techniques: (1) thermal desorption–differential mobility analyzer(TD–DMA) coupled to a NO3- chemical ionization–atmospheric-pressure-interface–time-of-flight (CI–APi–TOF) massspectrometer, (2) filter inlet for gases and aerosols (FIGAERO) coupled to anI− high-resolution time-of-flight chemical ionization mass spectrometer(HRToF-CIMS), (3) extractive electrospray Na+ ionizationtime-of-flight mass spectrometer (EESI-TOF), and (4) offline analysis offilters (FILTER) using ultra-high-performance liquid chromatography (UHPLC)and heated electrospray ionization (HESI) coupled to an Orbitraphigh-resolution mass spectrometer (HRMS). Intercomparison was performed bycontrasting the observed chemical composition as a function of oxidationstate and carbon number, by estimating the volatility and comparing thefraction of volatility classes, and by comparing the thermal desorptionbehavior (for the thermal desorption techniques: TD–DMA and FIGAERO) andperforming positive matrix factorization (PMF) analysis for the thermograms.We found that the methods generally agree on the most important compoundsthat are found in the nanoparticles. However, they do see different parts ofthe organic spectrum. We suggest potential explanations for thesedifferences: thermal decomposition, aging, sampling artifacts, etc. Weapplied PMF analysis and found insights of thermal decomposition in theTD–DMA and the FIGAERO. 
    more » « less
  3. A major fraction of atmospheric aerosol particles, which affect both air quality and climate, form from gaseous precursors in the atmosphere. Highly oxygenated organic molecules (HOMs), formed by oxidation of biogenic volatile organic compounds, are known to participate in particle formation and growth. However, it is not well understood how they interact with atmospheric pollutants, such as nitrogen oxides (NO x ) and sulfur oxides (SO x ) from fossil fuel combustion, as well as ammonia (NH 3 ) from livestock and fertilizers. Here, we show how NO x suppresses particle formation, while HOMs, sulfuric acid, and NH 3 have a synergistic enhancing effect on particle formation. We postulate a novel mechanism, involving HOMs, sulfuric acid, and ammonia, which is able to closely reproduce observations of particle formation and growth in daytime boreal forest and similar environments. The findings elucidate the complex interactions between biogenic and anthropogenic vapors in the atmospheric aerosol system. 
    more » « less